These r-scripts replicate the empirical analysis presented in Crombez and Høyland (2015) The Budgetary Procedure in the European Union and the Implications of the Treaty of Lisbon
, European Union Politics, Vol 16(1). The script first prepares and combines the voting data on budgetary for the Council and the EP obtained from votewatch.eu
. Then it runs 1 and 2 dimensional irt-models. It then makes the table that compares the fit of the one and two dimensional models, presented in table 2 in the paper, before reproducing the main results, found in figure 3 in the paper.
We first prepare the voting data from the EP. These were collected on a vote-by-vote basis from ‘votewatch.eu’.
set.seed(985236)
votes <- list.files("../EP_votes/")
votes <- votes[-length(votes)]
onevote<- list()
for (i in 1:length(votes)){
onevote[[i]] <- cbind(i,read.csv(paste("../EP_votes/",votes[i],sep="")))
colnames(onevote[[i]]) <- c("voteid","name","state","loyal","vote","group")
}
votes <- data.frame(do.call("rbind",onevote))
votes <- votes[,-4]
votematrix <- reshape(votes, timevar=c("voteid"),idvar=c("name","state","group"),direction="wide")
library(pscl)
## Loading required package: MASS
## Loading required package: mvtnorm
## Loading required package: coda
## Loading required package: lattice
## Loading required package: gam
## Loading required package: splines
## Loaded gam 1.09.1
##
## Loading required package: vcd
## Loading required package: grid
## Classes and Methods for R developed in the
##
## Political Science Computational Laboratory
##
## Department of Political Science
##
## Stanford University
##
## Simon Jackman
##
## hurdle and zeroinfl functions by Achim Zeileis
legisdata <- data.frame(with(votematrix,cbind(as.character(state),as.character(state),0,
1:nrow(votematrix),as.character(group),as.character(group))))
colnames(legisdata) <- c("state","icpsrState","cd","icpsrLegis","partyName","party")
voteinfo <- read.csv("../EP_votes/VoteInfo.csv")
info <- tolower(voteinfo$Name.of.document)
legisnames <- paste(votematrix$name,votematrix$state,votematrix$group,sep=" ")
rownames(votematrix) <- legisnames
votemat <- t(votematrix[,4:ncol(votematrix)])
trim <- function (x) gsub("^\\s+|\\s+$", "", x)
voteinfo$Name.of.document <- trim(voteinfo$Name.of.document)
votematInfo <- cbind(voteinfo[,1:2],votemat)
For the Council, ‘votewatch.eu’ gave us the full voting matrix with the auxiliary information. The procedure for preparing the data is slightly different.
tmp <- file("../CouncilVotes//BudgetvotesinCouncil.csv",encoding="Latin1")
votes <- read.csv2(tmp)
C.voteinfo <- votes[,1:33]
info <- trim(C.voteinfo$EP.ref)
voting <- t(votes[,62:89])
voting[is.na(voting)] <- 1
names <- unlist(strsplit(rownames(voting),split=".1"))
rownames(voting) <- names
###################
C.voting <- t(voting)
C.voting[voteinfo$Negative==1,] <- abs(C.voting[voteinfo$Negative==1,] -1)
C.voting[C.voting>1] <- "Against"
C.voting[C.voting==1] <- "For"
We then merge the two datasets together on the basis of the vote-info.
C.vote <- cbind(C.voteinfo[,31:32],C.voting)
C.vote$EP.ref <- gsub(" -.*","",C.vote$EP.ref)
votematInfo$Name.of.document <- gsub(" -.*","",votematInfo$Name.of.document)
C.vote$EP.date <- as.Date(C.vote$EP.date,format="%d.%m.%y")
C.vote <- C.vote[C.vote$EP.date>"2009-12-01",]
votematInfo$Date <- as.Date(votematInfo$Date,format="%d.%m.%Y")
votematInfo <- votematInfo[votematInfo$Date>"2009-12-01",]
votematInfo <- votematInfo[-1,]
test <- merge(C.vote,votematInfo,by.x=c("EP.date","EP.ref"),by.y=c("Date","Name.of.document"),all=TRUE)
votes <- test[,3:ncol(test)]
info <- test[,1:2]
for (i in 1:ncol(votes)){
votes[,i] <- ifelse(votes[,i]=="For",1,ifelse(votes[,i]=="Against",0,9))
}
legdata <- cbind(names,names,0,0,"council","council")
colnames(legdata) <- names(legisdata)
rownames(legdata) <- names
rownames(legisdata) <- legisnames
legisdata <- rbind(legdata,legisdata)
legisnames <- t(rownames(legisdata))
vot <- rollcall(t(votes),
legis.names=legisnames,
legis.data=legisdata,vote.data=info,
desc="EP and Council Budget votes 2009-12-01 - 2014-01-02",
source="votewatch.eu")
We are now ready to run the analysis. Note that we run the default number of iterations, burnin and thinning, rather than 100.000, after 10.000 burn-in with a thinning of 50 as reported in the paper. The substantive results are not affected by this change.
vot <- dropRollCall(vot,dropList=list(lop=1,legisMin=10))
out1 <- ideal(vot,d=1,store.item=TRUE)
## ideal: analysis of roll call data via Markov chain Monte Carlo methods.
##
## Ideal Point Estimation
##
## Number of Legislators 879
## Number of Items 185
##
##
## Starting MCMC Iterations...
##
## [1] -0.3642320 -1.6596150 -0.5721060 0.3793924 -0.5807004 -1.3596494
## [7] -2.1632699 -0.8574518 0.0869559 -1.6448841 -0.3946562 -0.0780867
## [13] -0.6734724 0.0634710 -0.9210432 -0.4299425 -1.0937631 -1.3296048
## [19] 0.8236861 0.1084242 0.1106637 0.2968537 0.0538292 -0.0275050
## [25] -1.0539214 0.3298937 0.9653798 0.9354770 -2.6450450 2.7115999
## [31] -0.9875095 0.3373122 -1.8801497 0.2617330 -0.8113204 -0.2514631
## [37] -1.1863465 -0.9412912 3.4776133 -0.7497147 -2.5423988 -0.4244189
## [43] -0.9844908 -1.3803041 -1.8198234 -1.7015857 -1.1320905 -0.9687494
## [49] -1.1800381 1.4544942 1.3351144 -1.7156196 -1.9911277 -0.9914184
## [55] 0.2582349 -2.6793684 -0.7170321 -0.1939483 0.4838451 -0.5718505
## [61] -1.0926475 0.5119636 -0.9479288 -3.0209655 -0.9444045 -1.4068799
## [67] -2.1573770 -0.8302388 2.3920195 -0.8658074 -0.3939087 -0.0948644
## [73] 0.3687565 0.7032196 -0.8286220 0.1944311 0.1526274 -0.1586053
## [79] -2.4600748 -0.3687480 -0.2471308 -1.0866799 0.3513106 1.1597121
## [85] -0.2942784 0.7100468 0.4803900 0.5448712 -0.9978076 2.3876847
## [91] -0.3865325 1.3163233 0.0946197 3.3125444 0.4902374 -0.3700771
## [97] -1.6912306 0.2875072 -0.0635669 -0.2255890 -0.3363105 1.4563720
## [103] 0.4917010 -0.3072757 -1.6750197 1.6207581 -1.7300531 0.5974775
## [109] 2.7448135 -1.5172217 -0.6956543 -0.2527784 -0.4167399 -1.8485868
## [115] 0.3799989 -2.4256831 0.2846599 -0.6874218 -0.1850644 1.2007839
## [121] -0.2402414 1.4716019 -0.1581209 1.4067740 -0.1227922 0.4424118
## [127] 0.4815316 -1.7201892 -1.1548577 -2.6900679 0.4087129 -0.0345586
## [133] -0.2152144 -0.1347237 -0.0001574 -1.1313514 -1.7593580 -0.6402500
## [139] 1.4052695 -0.7123764 0.5389625 0.2704876 0.7962497 3.1598441
## [145] -1.9456010 -0.0039114 0.4617250 -0.5026940 2.7001557 -1.7198635
## [151] 0.1237479 0.3839100 -0.0744613 -0.8944665 -0.3022053 -0.1638091
## [157] 0.1713460 -0.6682300 -1.1887778 -0.4157568 -0.4564381 -1.5656803
## [163] 1.0784515 1.0899465 -2.1160739 1.3439543 -1.3314709 -0.4700733
## [169] 2.9318498 -0.9639871 -0.8352391 -0.4442857 -0.0405061 -0.7587712
## [175] -0.9825014 -0.5836435 -0.1569397 -2.0484665 -2.2574599 -1.1015227
## [181] -0.5622537 0.2430259 -1.0885361 -0.5054097 -1.1084102 1.2927676
## [187] 2.2395747 -1.3826055 -0.4042134 -0.3439143 -1.1044247 0.3413138
## [193] -0.9316795 -0.9992530 -0.3758078 -1.3383974 -0.4716735 0.6726317
## [199] 0.3033183 -0.0608205 -0.5407229 0.9833673 -1.6292092 -0.1766598
## [205] 0.2817035 1.3709773 0.3346572 -0.6230499 0.2535978 -0.8083266
## [211] -0.8900471 0.3825684 1.4313066 -0.6492162 -1.5510345 2.5836145
## [217] -1.5312540 -0.3568669 -2.6574664 -0.0401897 0.6722465 -0.9190693
## [223] 0.7048472 -1.2590451 0.2778687 0.2950323 -0.1792572 -1.9492409
## [229] -0.7718158 0.5289707 1.7149721 1.5286741 1.4673376 -1.1004548
## [235] -0.2234134 -0.5625606 -0.4459400 -1.6797810 -1.5551417 -2.0937699
## [241] -0.1787706 -0.1742529 -0.5616412 0.1427676 -1.7983208 -2.0392277
## [247] -0.7732926 -0.7190898 -0.0167454 -1.4520332 -0.7563315 0.2454802
## [253] -0.8760877 1.4055216 -1.5322054 -1.9365022 0.1468575 0.0948498
## [259] -0.7762049 0.7198579 -2.8877903 -1.1355478 -1.1739410 -0.8499288
## [265] 0.1163439 -0.7641036 1.8120153 -0.9583902 -1.6239912 -0.7141001
## [271] -1.2783391 -0.3556245 -0.5113202 0.2760733 1.0848584 -1.1279865
## [277] -0.7338533 -1.8981300 -0.7882207 -1.1525465 -0.9316066 -1.4334124
## [283] -0.2857363 -0.5495614 0.6283190 0.0734817 0.2601513 -0.5500048
## [289] -0.6874318 1.5114295 1.4705430 -1.3560035 0.2962551 0.2560445
## [295] 0.4347513 0.4149448 -0.4376968 0.2529891 1.9062036 0.2317508
## [301] -1.1204670 0.3092416 -0.7183040 -1.0110603 0.7507917 0.3493042
## [307] -0.8275306 0.7169801 -1.2763829 0.5179447 0.5866971 0.4677232
## [313] 0.4505512 -0.9384283 0.3574851 0.3806941 0.2953657 1.0414350
## [319] 0.4429700 -1.7498429 -0.4167678 0.4164778 -0.9962018 -0.2397383
## [325] -0.5987824 -0.1030603 -0.4537980 -1.0749756 -0.1146611 -0.0088053
## [331] 1.4263811 -0.1803631 0.4294078 -0.5546450 -1.1594088 -1.3106423
## [337] -1.2206304 -1.1046373 0.3572346 0.7281671 -1.0874579 0.2864265
## [343] 0.1721670 -1.4212342 0.0281631 0.0348031 0.1810135 -0.8476687
## [349] -1.0458152 -0.1134616 -1.3138280 -1.6590689 -0.8981183 -0.5996102
## [355] 1.5296460 0.8597324 -0.9996891 -0.8297548 1.4656868 -0.4071596
## [361] -0.2752053 -0.0636489 0.1345999 -0.6048613 0.2736107 -0.1115895
## [367] -1.1612301 0.2993050 -2.0167442 1.2911269 -0.8584763 -0.7573018
## [373] 0.2697753 -1.6110116 -1.1650821 0.1047611 -0.6493644 -0.4798826
## [379] -0.8199904 -0.8833974 -1.7410740 1.1521922 -0.1793932 1.2827436
## [385] -0.1737955 -1.0723053 -1.7523489 -1.2640762 -1.1217068 -0.5932226
## [391] 1.0448888 -0.8367709 -1.1559522 -0.7610842 -0.3632119 0.4567107
## [397] 0.1316189 -1.3010636 -0.0942568 -0.6145385 -0.5423726 -0.0335380
## [403] -0.1268748 -1.4526290 0.6023640 0.7109996 0.7377593 -0.7321473
## [409] 1.0878326 -1.2368697 0.2837032 -0.8368238 0.0839287 -0.5728336
## [415] 0.1603849 -0.6293840 0.6230073 -0.3027153 0.3285442 -2.0966008
## [421] 0.0340151 0.2237402 -0.2930814 -0.4892319 0.1937764 0.0975513
## [427] -0.1955051 -2.3685765 -1.1847031 0.5851068 0.6023289 -0.1888583
## [433] -1.2585683 1.2916838 0.2188149 -2.0067427 -0.4844112 -0.2403877
## [439] 0.5037012 0.7224765 -0.4089651 -1.5656230 -1.2578911 -1.9330117
## [445] -0.5234988 0.3868022 0.1061997 -0.8138886 -1.0464112 -1.2162577
## [451] -0.0949880 -1.8293141 -1.1764484 -1.6472696 0.0564199 0.5670769
## [457] 0.4062688 1.4440143 -1.0817062 0.9684160 -0.9587943 -1.6769340
## [463] -1.7223433 -0.3957944 1.7321791 0.5882245 -0.4571636 1.1294059
## [469] -1.0376233 0.0316343 -0.6274894 0.0348935 -0.9235639 0.4419697
## [475] -0.6646889 0.5797859 -0.4126053 -2.2773820 0.5021784 -0.4432746
## [481] -1.5380702 -1.9745438 1.1932617 -0.2255803 -1.7399277 0.6941714
## [487] -1.1994617 3.0829412 -0.1989626 -0.4146221 -0.3106461 -0.7941169
## [493] -0.6657979 1.3739442 -0.4671111 -0.0536425 -1.4880129 0.1363286
## [499] -0.4161385 2.8179910 0.7179837 -1.6227053 -0.0288451 -0.6536486
## [505] -1.1441236 -0.3873047 1.4011918 -0.1934103 -0.8388497 -0.1732561
## [511] -1.7810997 0.1986544 -1.0187557 -1.0516947 -1.6654193 -0.6897126
## [517] -0.3089365 -1.1524806 -1.0236494 -0.9389293 -0.7266208 -1.1291018
## [523] -0.4684440 -0.1914217 0.0009831 -0.1455078 0.8280282 -1.5687874
## [529] -0.2133394 -0.6609602 -0.5812398 -1.2195938 1.0703411 -0.6901484
## [535] -1.9082108 -1.0000220 -1.0697854 -1.6002550 -0.7687949 0.2645276
## [541] 1.0539905 -0.9268761 -0.3492042 -0.6736900 -0.1149330 -0.3923079
## [547] 0.5949328 -2.3180193 -1.1366302 -2.0983147 -0.4216167 0.3196281
## [553] -0.5152012 -0.8558704 -0.2625451 -1.0064916 0.2058565 -1.2095592
## [559] -0.2794165 -0.9072588 -0.8761394 -0.7034733 -1.6489200 0.0702129
## [565] -1.1157007 -1.1788935 -0.0814506 -0.0984654 -0.1751092 -0.6621447
## [571] 0.2873228 -0.8173113 2.0552665 0.5159926 -1.1181820 -2.6278740
## [577] 0.5258244 -1.2878916 0.1637275 0.0134797 -0.4323736 0.6593103
## [583] -0.1450726 0.2563143 -0.9321283 0.0543356 -0.2780720 -0.8142492
## [589] -2.0692093 -0.9185409 -1.2696789 -0.3744182 0.4435251 1.3631433
## [595] -0.0125054 0.4597486 0.0597549 -1.0272978 0.5197407 0.2818935
## [601] -1.6632296 0.2027732 -0.6921330 -0.5070629 -0.9193835 0.5302872
## [607] -1.3194005 -1.1175453 -0.9163923 -0.6193670 -0.4204217 -0.4669054
## [613] -0.3365462 -1.1747471 -1.7363405 0.5358033 -1.3644038 0.0861467
## [619] 0.5099927 -1.1076376 -0.1309052 0.2729938 -0.4668372 1.4765440
## [625] -0.9470489 0.0264107 -1.8937362 -0.1276568 0.4578471 0.3347060
## [631] -0.5463529 -1.3009643 -0.2890095 1.3456321 0.5228956 1.4274086
## [637] -0.6923078 0.6141265 -0.0738777 -1.0360395 1.4695514 -1.3763433
## [643] 1.3267253 -1.0109856 -0.6335568 0.4562209 0.7817501 1.3744069
## [649] -1.8416081 0.6647220 1.1922191 -0.8019182 -0.8830907 -0.3805338
## [655] -0.4767581 0.6070099 -0.4848241 0.2544460 1.3751543 -1.3453049
## [661] 0.3709770 -0.8975446 0.3178042 -0.5029015 -0.7830992 -0.2365802
## [667] -1.3486686 0.0870059 0.0133855 -0.5479536 -1.4676759 -0.5131706
## [673] -1.6855323 0.9988095 0.7050607 1.2423254 -0.9334600 0.3187796
## [679] -0.7026082 0.5445590 -0.5634804 0.1541324 -1.8059131 0.4259529
## [685] -0.1297526 -0.1544785 -1.7900823 -0.7414421 -0.2928908 -1.6896614
## [691] 0.3304681 -1.7790191 -1.9445372 -2.3003954 0.2536445 -1.8016895
## [697] -0.6993627 -1.3656301 1.3327040 0.7321615 -0.0754986 0.4295662
## [703] -0.7075866 0.8477292 -0.9804555 -2.1854812 -0.9249252 -2.2596996
## [709] -0.4624974 1.1495234 -1.4424017 1.2362303 0.0284229 -0.6061061
## [715] 0.1305430 -0.3715512 -0.6556037 -1.4180509 -0.5896349 -0.6466061
## [721] -0.8763000 -0.9975650 0.6276325 0.2419409 -0.7650024 -0.3535613
## [727] -0.0964860 0.4736832 0.3334469 0.2318685 -0.9982112 0.9969201
## [733] -1.8035007 0.8970239 1.4648288 -0.6117641 1.2645475 -0.7176880
## [739] -0.1885729 -0.8668287 -0.5292247 -1.1184708 0.4613412 -0.3182144
## [745] 0.2303218 1.0317029 -1.5037216 -1.0261965 -1.0841096 1.1727209
## [751] -0.5436735 1.3344269 -0.9573658 -1.8945327 -0.6884538 -1.3423808
## [757] 0.4205627 -0.6183576 0.6838941 -0.6999640 -0.0076552 2.0302662
## [763] -1.1331545 -0.1072513 -1.2711931 0.7049780 0.3808343 -0.4162304
## [769] 1.3393892 -0.6132778 -0.4007007 -0.2001446 -1.4072527 -0.5003171
## [775] -1.3868526 -0.7960424 0.5187860 -1.0825159 0.3458005 -0.2718899
## [781] -2.1250047 1.5197920 0.3899860 -0.6160268 -1.4422107 -0.3012283
## [787] 0.1140015 2.1087009 0.5535173 -0.3047066 -0.0212461 -1.0760050
## [793] -1.1473415 -0.5971007 -1.4351437 1.4224657 0.1026115 -2.1075098
## [799] -0.5612141 -1.8599470 -0.7767781 0.1057184 0.7961060 0.0099386
## [805] 0.3871735 -2.2036259 -2.3040765 0.8100470 0.0396133 0.0481118
## [811] -1.7101279 -0.7598279 1.2411539 1.0922274 0.3224927 -2.1392633
## [817] 0.6603828 1.1309218 0.9142737 0.5422225 2.4553311 -1.0745804
## [823] -0.2371203 -1.5360132 0.5592757 -1.9604794 0.1181649 -0.4956875
## [829] -2.0347160 0.2490580 -0.5104211 -0.1435860 -1.8794568 -1.5120581
## [835] -0.2517067 -0.8276159 -1.4398713 -1.7103562 -1.2079256 1.7286780
## [841] 0.7580635 -1.3090759 -0.3919062 0.2292518 0.6442341 -1.5017422
## [847] -0.6104248 1.9410297 -1.7132736 1.4656393 -0.6866659 -1.5803598
## [853] -1.2049804 0.9311756 0.4481742 -1.4470713 -1.2806893 0.7799868
## [859] -0.5059390 -0.7333104 -0.6158752 -0.3596869 -0.9525004 -0.4819014
## [865] -1.1724653 -0.6273025 -1.2386814 -0.0263268 -1.1199656 -0.4260157
## [871] 0.9268802 -1.0355045 0.2005794 -0.0272177 -0.0122630 0.4302534
## [877] 0.3060316 -0.7001747 -0.8849964
## [1] "Vote 1" "Vote 2" "Vote 3" "Vote 4" "Vote 5" "Vote 6"
## [7] "Vote 7" "Vote 8" "Vote 9" "Vote 10" "Vote 11" "Vote 12"
## [13] "Vote 13" "Vote 14" "Vote 15" "Vote 16" "Vote 17" "Vote 18"
## [19] "Vote 19" "Vote 20" "Vote 21" "Vote 23" "Vote 24" "Vote 26"
## [25] "Vote 27" "Vote 28" "Vote 29" "Vote 30" "Vote 31" "Vote 32"
## [31] "Vote 33" "Vote 34" "Vote 35" "Vote 36" "Vote 37" "Vote 38"
## [37] "Vote 39" "Vote 40" "Vote 41" "Vote 42" "Vote 44" "Vote 45"
## [43] "Vote 46" "Vote 47" "Vote 48" "Vote 49" "Vote 50" "Vote 51"
## [49] "Vote 52" "Vote 53" "Vote 54" "Vote 55" "Vote 56" "Vote 57"
## [55] "Vote 58" "Vote 59" "Vote 60" "Vote 61" "Vote 62" "Vote 63"
## [61] "Vote 64" "Vote 65" "Vote 66" "Vote 68" "Vote 69" "Vote 70"
## [67] "Vote 71" "Vote 72" "Vote 73" "Vote 74" "Vote 75" "Vote 77"
## [73] "Vote 78" "Vote 79" "Vote 80" "Vote 82" "Vote 83" "Vote 84"
## [79] "Vote 85" "Vote 86" "Vote 87" "Vote 88" "Vote 89" "Vote 90"
## [85] "Vote 91" "Vote 92" "Vote 93" "Vote 94" "Vote 95" "Vote 96"
## [91] "Vote 97" "Vote 98" "Vote 99" "Vote 100" "Vote 101" "Vote 102"
## [97] "Vote 103" "Vote 104" "Vote 105" "Vote 106" "Vote 107" "Vote 108"
## [103] "Vote 109" "Vote 110" "Vote 111" "Vote 112" "Vote 113" "Vote 114"
## [109] "Vote 115" "Vote 116" "Vote 117" "Vote 118" "Vote 119" "Vote 120"
## [115] "Vote 122" "Vote 123" "Vote 124" "Vote 125" "Vote 126" "Vote 127"
## [121] "Vote 129" "Vote 131" "Vote 132" "Vote 133" "Vote 134" "Vote 135"
## [127] "Vote 136" "Vote 137" "Vote 138" "Vote 139" "Vote 140" "Vote 141"
## [133] "Vote 142" "Vote 143" "Vote 144" "Vote 145" "Vote 146" "Vote 147"
## [139] "Vote 148" "Vote 149" "Vote 150" "Vote 151" "Vote 152" "Vote 153"
## [145] "Vote 154" "Vote 155" "Vote 156" "Vote 157" "Vote 158" "Vote 159"
## [151] "Vote 160" "Vote 161" "Vote 162" "Vote 163" "Vote 164" "Vote 165"
## [157] "Vote 166" "Vote 167" "Vote 168" "Vote 169" "Vote 170" "Vote 171"
## [163] "Vote 172" "Vote 173" "Vote 174" "Vote 175" "Vote 176" "Vote 177"
## [169] "Vote 178" "Vote 179" "Vote 180" "Vote 181" "Vote 182" "Vote 183"
## [175] "Vote 184" "Vote 185" "Vote 186" "Vote 187" "Vote 188" "Vote 189"
## [181] "Vote 190" "Vote 191" "Vote 192" "Vote 193" "Vote 194"
out2 <- ideal(vot,d=2,store.item=TRUE)
## ideal: analysis of roll call data via Markov chain Monte Carlo methods.
##
## normalize option is only meaningful when d=1
## Ideal Point Estimation
##
## Number of Legislators 879
## Number of Items 185
##
##
## Starting MCMC Iterations...
##
## [1] 0.161177 -0.651390 -0.546015 0.561338 -1.999804 -0.029034
## [7] -2.010152 -0.685226 -0.903979 -0.862093 0.122312 -1.897535
## [13] -0.175823 0.305980 0.035230 -1.386496 -1.076372 -1.646360
## [19] 0.768668 0.258155 -0.048213 0.685142 0.295521 0.226859
## [25] -0.856505 0.706557 0.780355 0.947570 -1.178571 2.083715
## [31] -0.460112 -0.736039 -0.206025 -0.589101 -0.200869 -0.146835
## [37] -0.333248 -0.723210 3.322866 -0.153338 -0.488596 -0.770322
## [43] -0.234086 -0.384539 -0.810154 -0.579332 -0.898941 -1.150522
## [49] -0.553700 2.031311 1.720376 -0.243390 -0.377742 -0.109011
## [55] -0.929625 -2.216829 -0.466171 -0.311974 0.373525 0.042933
## [61] -0.242294 0.476280 -0.975349 -0.837731 -1.237609 -1.044890
## [67] -1.645144 -0.637592 2.736385 -1.106662 -0.215282 -0.088502
## [73] 0.311280 0.904184 -1.624566 -1.323785 0.094710 -0.332404
## [79] -1.821662 0.022649 -0.163534 -0.536464 -0.931199 1.105334
## [85] 0.062917 0.714350 0.460934 0.736319 -0.325315 2.692374
## [91] -0.058205 1.762070 -0.043892 2.524690 0.454253 -1.064126
## [97] -0.366617 -0.547910 -0.050690 -0.214742 -0.755617 1.712143
## [103] 0.004619 -0.081208 -1.289452 1.985770 -1.020683 0.114970
## [109] 2.523438 -1.453152 -0.894921 -0.591512 -0.114379 0.345076
## [115] -0.768361 -0.097625 -0.128894 -0.039582 -0.283696 1.555100
## [121] -0.588295 1.829549 0.179257 1.620748 -0.351186 -0.073674
## [127] -0.173778 -0.327747 -1.416731 -0.911847 0.604453 -1.599299
## [133] -0.108309 -0.129582 -0.079398 -0.318407 -0.355246 -0.204095
## [139] 1.893914 -1.567966 0.652841 0.276287 0.952477 2.432423
## [145] -0.790187 -0.298235 -0.983180 -2.504480 2.423502 -1.016796
## [151] 0.384263 -0.581041 -0.090579 -0.141320 -0.247049 -0.510783
## [157] -0.836553 -0.938752 -1.424858 -0.934712 -1.193397 -0.811743
## [163] 1.173613 1.332557 -0.213691 1.472716 -1.983854 -0.284367
## [169] 2.566996 -0.790827 -1.150675 -0.074715 0.192665 -1.284652
## [175] -0.720338 -1.619791 -1.133518 -0.176170 -1.125030 -0.503463
## [181] -0.900311 -0.527601 -0.317319 -0.699177 -0.357343 1.910932
## [187] 2.050821 -3.177252 -0.164143 0.023026 -0.459784 0.046909
## [193] -1.418769 -0.375355 -1.103253 -0.237501 -0.281320 0.789829
## [199] -0.587669 -0.192148 -0.569367 1.252895 -0.521104 0.271553
## [205] -0.326031 1.592512 0.285647 -1.065692 0.552608 -1.205988
## [211] -0.464823 -0.866497 1.732875 -2.061794 -1.841553 2.738583
## [217] -1.543771 -0.208734 -1.499819 -0.165978 0.786978 -1.139052
## [223] 0.518721 -1.041797 0.516868 -1.022656 -0.567305 -1.155343
## [229] 0.008591 0.559756 1.737679 1.827438 1.678417 -0.274531
## [235] 0.190108 -0.264570 -1.169410 -0.634120 -0.938140 -2.013894
## [241] -0.667463 -0.179729 -1.156467 0.178227 -0.736713 -0.188345
## [247] -1.540681 -1.730119 -0.592305 -1.702758 -0.196372 -0.696294
## [253] -0.974870 1.734761 -1.759153 -2.378289 -0.053976 -0.300256
## [259] -0.021779 0.977248 -2.028818 -0.429043 -0.506170 -0.035110
## [265] -0.522650 -0.498444 1.864760 -0.872521 -0.758205 -0.825426
## [271] -0.909298 -1.199187 0.067166 -0.209515 1.066335 -0.175075
## [277] -2.171243 -1.606785 0.052329 -0.315419 -0.761309 -1.393458
## [283] -0.381569 -0.316045 0.593169 -0.122428 0.385195 -0.201076
## [289] -0.302789 1.950609 2.008418 -1.398441 -0.792366 -0.743790
## [295] 0.200509 -0.327680 -0.014474 0.458535 2.515154 0.897803
## [301] -1.296013 0.218270 -0.191087 -0.750798 0.862886 0.148808
## [307] -0.970340 1.006198 -0.874750 0.597374 0.471979 0.261627
## [313] 0.446358 -0.381651 -0.011452 0.105717 -0.370692 1.172456
## [319] 0.652223 -0.608401 -2.133345 0.539150 -0.140283 -0.283291
## [325] -0.414020 -0.001701 -0.005241 -0.206439 -0.346975 -0.072656
## [331] 2.833933 -0.251053 -0.928865 -0.166352 -0.229837 -1.286668
## [337] -0.600192 -0.741804 -0.801224 0.797498 -0.369165 0.019913
## [343] -0.048793 -0.373142 -1.778855 0.127579 0.196170 -0.823626
## [349] -0.614423 0.017439 -0.570953 -0.663421 -0.328774 -1.940984
## [355] 1.834612 0.710883 -1.809371 -0.888819 2.353301 -0.016970
## [361] -1.419030 -0.236451 -0.066131 -0.634818 -1.604963 -0.539368
## [367] -2.702703 -0.773815 -0.411807 1.689738 -0.566665 -1.296223
## [373] 0.224342 -0.635200 -0.633971 0.012479 -0.167765 -0.619549
## [379] -1.027009 -1.313440 -0.201372 1.094461 -2.378936 1.478502
## [385] 0.013709 -0.454183 -0.461348 -0.315573 -0.044161 -0.252281
## [391] 1.011045 -0.947258 -0.993864 -0.123578 -0.184818 -0.611545
## [397] -0.850383 -1.295150 -0.454317 -1.300752 -1.392380 0.199786
## [403] 0.266630 -0.829096 0.770032 0.642610 0.770285 0.088694
## [409] 1.152670 -0.722178 0.407836 -0.858368 -0.829070 -1.698354
## [415] -0.504397 -0.809552 0.727135 0.073666 -0.207874 -3.263671
## [421] 0.231530 0.227295 -0.090883 0.091492 -0.698727 0.344682
## [427] 0.195651 -1.703499 -1.158332 0.462411 0.649274 0.095052
## [433] -0.587720 2.206155 0.349823 -1.763828 0.070668 -0.013468
## [439] 0.477982 0.724346 -0.530679 -2.249470 -1.153113 -0.623589
## [445] -0.004252 0.064321 -0.022626 -0.615990 -0.870975 -0.516114
## [451] 0.099002 -2.611634 -0.526735 -0.433248 0.152995 0.496171
## [457] 0.521434 1.881005 -0.494806 1.089165 -0.400639 -0.645260
## [463] -0.942887 -0.066345 2.431627 0.599753 -0.286504 1.014702
## [469] -0.913222 -0.206763 -1.284328 -0.210099 -1.519886 0.631477
## [475] -1.629956 0.568211 -0.132333 -1.360514 0.244388 -0.389521
## [481] -1.966889 -1.431323 1.400183 -1.270462 -0.460583 0.862168
## [487] -0.298697 2.268733 -1.695991 -1.804949 0.084970 -1.171423
## [493] -1.004279 1.670337 -0.330440 -1.006608 0.108186 -0.113928
## [499] -0.459279 2.550358 0.931913 -0.243282 -0.040220 -0.135880
## [505] -1.374095 -1.027285 1.671116 -0.280526 -0.341439 -0.384738
## [511] -0.691510 0.267122 -0.217030 -0.892663 -1.400771 -0.717680
## [517] -1.835077 -1.195335 0.045675 -1.029147 -1.468166 -0.601305
## [523] -0.536903 -0.136817 -0.118296 -0.879397 0.950453 -0.838442
## [529] -1.294972 -0.897722 -0.174469 -1.627525 1.095685 -1.186915
## [535] -1.006188 -1.515380 -1.379703 -0.579237 -1.019691 -0.053263
## [541] 1.104239 0.213334 0.188191 -1.623978 -1.953809 -0.528210
## [547] 0.713429 -1.510392 -0.884340 -1.204862 -0.540006 0.486851
## [553] -1.595731 -1.446844 -0.339509 -0.055270 0.071964 -0.612829
## [559] 0.106080 -1.053746 -0.972239 -0.864009 -1.130236 -1.340752
## [565] -1.684624 -0.815911 -0.316161 0.049054 0.034834 -0.225000
## [571] -0.524565 -0.895673 2.256768 0.551601 -1.840914 -0.936579
## [577] 0.488014 -0.510879 -1.606002 0.010999 -1.487813 0.702423
## [583] -0.043871 -0.211000 -0.942775 0.131379 -0.438799 -1.206581
## [589] -1.154847 -0.405477 -0.862975 -1.003036 0.107554 1.566005
## [595] 0.305911 -1.146980 0.097865 -1.333993 -0.150121 -0.865276
## [601] -0.559465 -0.742311 -0.441306 -0.623292 -0.672603 0.618966
## [607] -0.514663 -0.660320 -1.490144 -1.136041 -1.440668 -0.002579
## [613] -0.554430 -0.650776 -1.272153 0.471337 -0.463471 -0.062408
## [619] 0.539257 -1.017546 -0.681649 0.105108 -1.715493 1.758941
## [625] -1.087833 0.072752 -1.685314 -1.533061 0.586851 -0.284617
## [631] -0.393427 -1.068611 -1.238588 1.551278 0.433620 2.095792
## [637] 0.012537 0.609816 -0.538393 -0.549007 1.716895 -0.358619
## [643] 1.974722 -1.567069 -1.070273 0.370190 0.764052 1.932279
## [649] -2.086187 0.764096 1.296102 -1.998682 -2.461222 0.087564
## [655] -0.455837 0.739009 -2.350644 0.207038 1.951480 -0.854988
## [661] -0.086508 -0.896633 -0.928157 -0.368581 -0.615992 -0.098216
## [667] -1.948169 0.151536 0.240695 -0.905670 -0.904345 -0.930217
## [673] -0.588306 0.949730 0.774161 1.613438 -0.906110 -0.916212
## [679] -0.998634 0.641351 -1.501615 -0.502527 -0.550261 -1.185261
## [685] -0.511921 -0.596378 -1.012070 -0.078951 -0.347597 -0.524210
## [691] 0.345027 -0.840025 -0.640423 -0.855225 0.451927 -0.850280
## [697] -1.494708 -0.395612 1.681204 0.927295 0.196807 0.421251
## [703] -1.488502 0.963119 -2.575802 -0.625308 -0.288901 -2.107089
## [709] -0.671192 1.504664 0.211352 1.427235 -0.549771 -0.068740
## [715] 0.289595 0.119720 -0.538152 -0.800684 -0.054096 -0.476111
## [721] -1.419895 -0.695057 0.628258 0.301580 -0.777038 -0.934597
## [727] 0.154784 0.562207 0.057327 0.481853 -0.902735 0.980820
## [733] -0.101650 0.920096 1.505709 -1.014100 1.731285 -0.610476
## [739] -0.814491 0.192092 -1.355650 -0.406531 0.144119 -0.836939
## [745] 0.164692 1.118466 -0.449636 -1.126119 -0.510941 1.089987
## [751] -0.236120 1.466219 -0.310185 -0.479641 -0.851434 -1.184374
## [757] -0.770589 -0.919018 0.748976 -0.568956 -0.029106 2.024044
## [763] -0.456293 -0.120135 -1.997518 0.684919 -0.248661 -0.100254
## [769] 2.350988 -0.586322 -0.537362 -0.005425 -0.733762 -1.513456
## [775] -0.741013 -1.285568 0.449554 -1.641927 0.135350 -0.174605
## [781] -0.693085 1.609487 0.093101 -0.755245 -1.035733 -0.271449
## [787] -0.995305 2.210312 0.919975 0.184409 -1.121979 -0.742921
## [793] -2.113518 -0.087474 -1.194039 1.963299 -0.344190 -1.595020
## [799] -0.475464 -2.039189 -1.243071 -1.717083 0.848228 0.257838
## [805] -0.225256 -1.622531 -0.331424 1.171473 -0.057519 -0.553254
## [811] -0.856233 -1.697106 1.412921 1.233791 -0.417074 -0.784890
## [817] 0.764882 1.548579 1.131459 0.843523 2.380642 -1.237022
## [823] -0.534841 -0.669692 0.225022 -0.677562 -0.399769 -1.594106
## [829] -0.735286 -0.323773 -0.385888 -1.557128 -0.090699 -0.758786
## [835] -0.700739 -0.332504 -0.368568 -0.326241 -0.473265 2.490657
## [841] 0.575098 0.096685 -1.350963 -0.711480 0.546858 -1.121298
## [847] -0.114444 1.788857 -0.366737 1.504996 0.238439 -0.120096
## [853] -2.117985 1.256079 0.654766 -2.428001 -0.264692 0.738743
## [859] -0.540685 -0.236891 -0.485915 -0.452986 -0.117027 -1.824899
## [865] 0.015927 -0.141818 -0.452951 0.331972 -0.829109 0.270037
## [871] 1.243081 -0.276046 0.672054 0.170743 -1.061476 0.189492
## [877] 0.118481 -0.220278 -0.324645 -0.994817 0.014379 -0.635001
## [883] -0.578855 0.891387 -1.950256 -0.015028 0.128552 1.064012
## [889] -0.227756 -1.205595 0.307463 -0.574068 -0.581930 -0.483400
## [895] 1.551062 0.814020 -0.611864 0.117453 0.373122 0.282991
## [901] -0.437605 0.096941 -0.031506 -1.164482 -0.673372 0.199444
## [907] -0.107448 0.248440 0.854979 -1.361208 2.029402 -0.104235
## [913] 1.720246 -0.831626 -0.994812 -0.514152 0.031354 -0.442830
## [919] -0.936703 0.229252 -0.623478 0.601027 -1.439294 0.197543
## [925] -1.151606 0.891598 0.909457 0.504282 -1.265414 -0.917977
## [931] -0.143972 -0.291550 -0.974948 1.888579 -1.492694 0.760921
## [937] -0.285592 0.143975 -0.435713 0.207472 1.635906 -1.147197
## [943] -1.192355 0.994621 -0.510871 -0.672770 -0.876866 0.026908
## [949] -1.250336 -1.083352 0.310934 -0.080951 0.723331 -0.117984
## [955] 2.741189 -0.326372 1.061630 -0.118636 0.497279 0.269175
## [961] 0.459274 2.161641 -1.233543 0.250976 -0.238556 0.517179
## [967] 0.232363 -0.299632 1.274529 -0.144269 -1.017638 0.192158
## [973] 0.602167 0.240732 1.056025 0.237916 1.897035 0.564675
## [979] 0.668800 1.048655 -0.830019 1.322315 0.492720 -0.136835
## [985] 0.338899 -0.272234 1.042757 0.630720 0.465132 -0.543786
## [991] -0.291580 0.353636 0.404591 1.840546 -0.026190 1.238292
## [997] -0.248234 0.010031 -0.987354 -0.808132 -1.067622 0.182090
## [1003] -0.162440 -1.524472 1.367588 -1.615643 0.336026 -0.763109
## [1009] -0.507856 0.321277 -1.471311 -0.930557 0.549151 -0.821787
## [1015] -0.564380 0.287246 -0.267830 -1.093953 0.666230 0.889062
## [1021] -0.040237 1.241006 0.393899 -0.286174 0.514850 2.128409
## [1027] -0.850157 0.061360 0.128237 -0.132036 1.781431 0.457813
## [1033] 0.070716 0.674180 1.053520 2.040670 0.986228 0.633562
## [1039] 0.079473 1.007905 -0.168208 -0.901336 -1.317877 -0.901011
## [1045] -0.581093 -0.243983 0.113651 -0.136029 -1.190172 -0.718818
## [1051] -1.028581 0.050500 0.611814 0.758468 -0.151870 -0.467123
## [1057] 0.381383 0.087475 -1.083932 -1.268972 1.897311 -0.644020
## [1063] -0.647888 -0.320459 -1.294104 0.004257 0.132567 -0.584050
## [1069] -0.216849 0.891157 1.152426 0.191378 0.650663 -1.539938
## [1075] 0.008052 -0.535711 1.058493 1.878808 0.270114 0.080988
## [1081] -0.272953 0.870912 -0.316169 1.668138 -0.832412 0.635262
## [1087] 0.364334 0.333720 0.076506 0.321329 1.783462 -0.796710
## [1093] 1.443471 0.844264 0.391144 -1.008122 -0.459523 -0.697750
## [1099] 0.801868 0.966445 0.666145 1.373202 -1.365309 -0.198631
## [1105] 2.353363 0.790351 1.190751 -0.236517 0.386475 -0.690428
## [1111] -0.840510 -0.918399 0.032135 -0.127501 0.101193 1.240038
## [1117] -0.386478 -0.884531 -1.234962 -0.221918 -0.183840 0.707760
## [1123] -0.473260 -0.418418 -0.266481 0.972148 0.245496 0.782405
## [1129] -0.183831 0.089969 1.945029 -0.676948 -1.001106 -0.467903
## [1135] -0.117725 -1.460559 1.111856 -0.007770 1.341705 -0.523277
## [1141] 0.803471 -1.075513 -0.213483 -0.442931 0.654036 0.411993
## [1147] 0.763418 -0.100218 -0.371953 -0.994398 -2.186784 -0.042015
## [1153] 1.520408 -1.427915 0.309908 -0.569566 -0.947245 0.007767
## [1159] -0.293956 -0.178610 -0.018940 -1.215898 -0.227310 0.850927
## [1165] -1.361863 -0.083139 -0.193327 -0.796988 -0.974983 -1.204759
## [1171] 0.879214 1.734794 1.721437 -0.510145 1.492570 -0.304864
## [1177] 0.064584 -1.334967 -0.280726 0.930980 -0.334117 -0.249488
## [1183] -1.860019 0.731797 -0.781630 0.023721 1.025039 -0.749503
## [1189] 0.379218 0.486904 0.867943 0.372261 -0.482300 1.223004
## [1195] 1.149287 1.748326 0.210497 -0.383964 -0.041371 -0.020947
## [1201] 0.083050 0.038160 0.310823 0.102791 0.544493 -0.711215
## [1207] 0.414937 0.362910 -0.331130 2.584657 0.413258 2.393041
## [1213] 0.000866 0.157240 -0.737155 -0.053489 -0.631421 1.577534
## [1219] 1.166093 -1.149709 1.074813 -0.830013 -0.954626 -0.773213
## [1225] -0.646941 0.094344 -0.981012 -1.394025 -0.673020 0.705396
## [1231] -0.258895 -0.910460 0.539646 -1.028530 -0.574719 0.399911
## [1237] 1.149728 -1.612501 0.014605 -1.968110 -0.917816 -0.748017
## [1243] -0.583989 3.120193 0.098284 -0.201297 1.823638 0.422475
## [1249] -0.849126 -0.612296 1.016312 1.071492 -0.677758 0.945465
## [1255] 1.113798 -0.413281 0.417644 -0.540702 -1.724950 0.063627
## [1261] -1.577849 -0.456725 -0.767740 -0.361407 0.391754 0.520809
## [1267] 0.332655 -0.818927 -1.491234 -0.715105 -0.477667 0.723670
## [1273] -0.432364 0.621093 2.000434 1.999094 0.208875 0.301941
## [1279] -0.800294 -0.546827 -0.188945 0.149134 -0.081709 0.586816
## [1285] 1.232965 1.035646 -0.533368 -1.644527 -0.450339 0.120667
## [1291] 0.798030 1.147266 0.598542 1.417049 -0.664355 1.175759
## [1297] 0.017247 1.553065 -1.315966 0.077685 0.114773 -0.599683
## [1303] -0.143861 1.979916 -0.056811 0.125926 0.058467 -0.580142
## [1309] 0.938374 0.859303 -0.004959 -1.010901 1.721801 0.181688
## [1315] -0.008925 -0.706477 -0.809098 0.466337 1.174049 -0.890749
## [1321] -0.290480 0.140512 -1.066701 -0.162724 0.913876 0.182093
## [1327] -1.707630 -0.151938 -1.115889 -0.345718 -1.799280 -0.728625
## [1333] 0.193404 0.493015 0.211195 0.154792 -1.167833 -0.288130
## [1339] -0.433538 0.041155 0.134155 -0.281660 0.296543 -0.522004
## [1345] 0.660912 0.295812 -1.412066 -0.706419 -1.349744 -1.602515
## [1351] 0.503729 1.620320 0.624710 0.362223 0.339516 -0.504305
## [1357] 0.248085 1.074137 0.544420 -0.964354 0.083053 0.464403
## [1363] -0.730766 -0.787663 1.027084 0.440622 0.661940 0.349933
## [1369] 1.297297 -0.380095 0.221551 0.340573 -0.731281 -0.381273
## [1375] -2.319438 -0.128993 -1.108902 -1.222017 0.107326 1.447903
## [1381] -0.037868 0.084358 0.126635 -0.533170 0.250115 -1.302421
## [1387] -0.501502 -0.213202 0.829448 0.564748 -0.334521 0.047215
## [1393] -1.227107 0.608760 0.248151 1.294125 0.621833 -0.632764
## [1399] -1.435893 1.378102 0.384647 -1.001929 -1.044417 -0.889246
## [1405] 0.068187 0.249969 -0.742544 -0.172475 -0.235387 -0.085324
## [1411] -0.036207 -1.452086 0.060229 0.520544 0.971745 0.070890
## [1417] -0.423808 -0.160730 1.163104 -1.672498 -0.549346 -0.351720
## [1423] -2.216412 0.764759 -0.055147 0.160405 -2.335960 0.659332
## [1429] -0.824221 -0.313561 0.953195 -0.573586 -0.943404 0.749211
## [1435] 0.245496 0.895515 0.265141 0.327943 0.765701 0.960396
## [1441] 0.948656 -1.811873 2.371657 -1.396416 0.809240 0.615814
## [1447] 0.006032 -0.533996 0.620446 1.833686 -1.180984 -0.216997
## [1453] 0.105278 0.164653 -0.749561 0.762221 0.203365 2.741061
## [1459] -0.554371 -0.390834 0.136948 -0.929317 1.334971 1.455815
## [1465] -0.444241 0.429476 0.583481 -1.457492 0.481673 -1.095855
## [1471] 0.895581 0.622004 0.103838 -0.292397 -0.976981 -0.012257
## [1477] -0.679324 1.257062 2.081028 0.277605 1.777812 0.276458
## [1483] -0.635691 0.521238 0.190248 0.338084 -0.145818 0.679051
## [1489] 0.934888 1.477755 0.517500 -1.278657 -1.395789 0.556023
## [1495] 0.483035 0.549854 -0.074575 0.237516 -0.852524 0.685479
## [1501] 1.226458 0.411165 0.416461 0.528073 -0.643064 1.042848
## [1507] 0.174053 0.156036 1.373336 -0.549160 -0.186527 -0.609631
## [1513] -0.944209 0.665537 1.091871 -0.848554 -0.240357 0.636399
## [1519] -0.700420 -0.865397 -0.292525 -1.365828 -1.012102 -1.023136
## [1525] -0.754552 1.162505 -1.292965 1.492053 0.251690 -1.713331
## [1531] -0.847002 -0.359851 0.024643 -0.931598 0.991218 0.084337
## [1537] -0.863497 -1.126621 0.707559 1.197507 -0.102608 2.235031
## [1543] -0.224683 -0.141208 0.487582 -0.220590 0.321052 0.102193
## [1549] -1.811959 0.177998 0.462423 0.523333 -0.937653 1.097605
## [1555] -1.195530 -1.084594 2.105960 0.921949 0.839169 -2.194238
## [1561] 1.708977 -1.219005 2.099283 1.307718 -0.190547 -0.275561
## [1567] -0.629747 0.349563 -1.033720 -0.251976 -0.012042 -0.465169
## [1573] -0.199434 -0.518455 -1.188894 -0.212053 0.367896 -0.994645
## [1579] 1.086423 0.152645 0.173143 1.530108 0.367999 -0.117112
## [1585] -0.949737 0.074173 -0.878305 0.530112 0.304187 -0.478350
## [1591] -0.888882 -0.684955 0.115719 0.018966 -0.350871 -0.566578
## [1597] 0.450698 0.267876 -0.060388 1.087920 0.297311 0.026231
## [1603] -0.131478 0.525840 -1.235846 -0.463059 0.152476 1.277618
## [1609] -0.236178 0.028341 -0.858597 -0.365755 -1.983185 -0.399271
## [1615] -1.133974 -1.341495 0.328454 -2.021155 0.207182 -0.402390
## [1621] -0.895652 -1.233166 1.380190 1.027202 -1.054337 0.016220
## [1627] -1.704101 0.100041 -1.359891 -0.662863 -0.782190 -0.565520
## [1633] -0.447361 -2.033689 -0.762229 1.961136 0.823408 0.857056
## [1639] 0.622728 -1.134369 0.503988 -0.602631 0.396333 -0.382084
## [1645] 0.293975 1.345165 -0.666377 1.955652 0.342998 -0.129540
## [1651] 0.312613 -0.877455 -0.358761 -1.039092 1.374540 1.138435
## [1657] 1.758016 0.215308 -0.087209 0.319846 0.071485 1.106349
## [1663] 0.057123 -0.657171 0.039278 0.804821 1.758121 1.259729
## [1669] -0.427134 2.434847 -0.982182 1.251987 0.465355 0.945226
## [1675] -1.095621 -0.039843 -0.259751 -0.507319 -0.747538 0.918467
## [1681] -0.196893 0.897721 -0.671597 1.525072 0.216865 -0.286760
## [1687] 0.803811 0.420569 1.542062 -0.089843 1.132806 -0.588290
## [1693] -0.777363 1.764165 0.668949 0.295593 -1.235044 -0.476077
## [1699] 0.874269 -0.124674 0.319045 1.133356 -0.637228 1.229820
## [1705] -1.886446 1.612052 0.039708 -0.173666 1.173693 0.044611
## [1711] 2.470091 0.189748 0.959394 -0.874784 0.110421 0.514886
## [1717] 0.457936 -0.814763 2.197350 -0.699283 -0.977402 -0.381255
## [1723] 0.159085 0.165367 -0.391066 0.055121 0.940936 -0.305034
## [1729] -0.724882 -0.452347 -0.348445 -0.330763 -0.847443 0.138566
## [1735] -0.250533 0.214287 0.592215 0.249667 -0.614059 -0.021386
## [1741] -0.525043 0.222215 1.675852 0.439602 0.212722 -0.376202
## [1747] -0.307964 0.130467 -0.236114 -0.424582 -0.299094 0.633589
## [1753] -0.162677 -0.835662 1.663003 0.765843 -1.026879 0.009112
## [1] "Vote 1" "Vote 2" "Vote 3" "Vote 4" "Vote 5" "Vote 6"
## [7] "Vote 7" "Vote 8" "Vote 9" "Vote 10" "Vote 11" "Vote 12"
## [13] "Vote 13" "Vote 14" "Vote 15" "Vote 16" "Vote 17" "Vote 18"
## [19] "Vote 19" "Vote 20" "Vote 21" "Vote 23" "Vote 24" "Vote 26"
## [25] "Vote 27" "Vote 28" "Vote 29" "Vote 30" "Vote 31" "Vote 32"
## [31] "Vote 33" "Vote 34" "Vote 35" "Vote 36" "Vote 37" "Vote 38"
## [37] "Vote 39" "Vote 40" "Vote 41" "Vote 42" "Vote 44" "Vote 45"
## [43] "Vote 46" "Vote 47" "Vote 48" "Vote 49" "Vote 50" "Vote 51"
## [49] "Vote 52" "Vote 53" "Vote 54" "Vote 55" "Vote 56" "Vote 57"
## [55] "Vote 58" "Vote 59" "Vote 60" "Vote 61" "Vote 62" "Vote 63"
## [61] "Vote 64" "Vote 65" "Vote 66" "Vote 68" "Vote 69" "Vote 70"
## [67] "Vote 71" "Vote 72" "Vote 73" "Vote 74" "Vote 75" "Vote 77"
## [73] "Vote 78" "Vote 79" "Vote 80" "Vote 82" "Vote 83" "Vote 84"
## [79] "Vote 85" "Vote 86" "Vote 87" "Vote 88" "Vote 89" "Vote 90"
## [85] "Vote 91" "Vote 92" "Vote 93" "Vote 94" "Vote 95" "Vote 96"
## [91] "Vote 97" "Vote 98" "Vote 99" "Vote 100" "Vote 101" "Vote 102"
## [97] "Vote 103" "Vote 104" "Vote 105" "Vote 106" "Vote 107" "Vote 108"
## [103] "Vote 109" "Vote 110" "Vote 111" "Vote 112" "Vote 113" "Vote 114"
## [109] "Vote 115" "Vote 116" "Vote 117" "Vote 118" "Vote 119" "Vote 120"
## [115] "Vote 122" "Vote 123" "Vote 124" "Vote 125" "Vote 126" "Vote 127"
## [121] "Vote 129" "Vote 131" "Vote 132" "Vote 133" "Vote 134" "Vote 135"
## [127] "Vote 136" "Vote 137" "Vote 138" "Vote 139" "Vote 140" "Vote 141"
## [133] "Vote 142" "Vote 143" "Vote 144" "Vote 145" "Vote 146" "Vote 147"
## [139] "Vote 148" "Vote 149" "Vote 150" "Vote 151" "Vote 152" "Vote 153"
## [145] "Vote 154" "Vote 155" "Vote 156" "Vote 157" "Vote 158" "Vote 159"
## [151] "Vote 160" "Vote 161" "Vote 162" "Vote 163" "Vote 164" "Vote 165"
## [157] "Vote 166" "Vote 167" "Vote 168" "Vote 169" "Vote 170" "Vote 171"
## [163] "Vote 172" "Vote 173" "Vote 174" "Vote 175" "Vote 176" "Vote 177"
## [169] "Vote 178" "Vote 179" "Vote 180" "Vote 181" "Vote 182" "Vote 183"
## [175] "Vote 184" "Vote 185" "Vote 186" "Vote 187" "Vote 188" "Vote 189"
## [181] "Vote 190" "Vote 191" "Vote 192" "Vote 193" "Vote 194"
Next, compare the fit of the models, presented in table 2
of the paper.
phat <- predict(out1, cutoff=.88)
## predict.ideal: Working with rollcall object vot
##
## Using posterior means in ideal object.
phat2 <- predict(out2, cutoff=.88)
## predict.ideal: Working with rollcall object vot
##
## Using posterior means in ideal object.
phat.table <- round(rbind(
phat$party.percent,
phat2$party.percent,
phat2$party.percent - phat$party.percent),3)
phat.table
## council ALDE/ADLE ECR EFD EPP Greens/EFA GUE-NGL NI
## [1,] 85.806 95.015 70.38 80.939 97.850 90.002 84.169 81.930
## [2,] 91.484 97.096 89.11 85.808 98.617 95.953 88.015 89.015
## [3,] 5.678 2.081 18.73 4.869 0.767 5.951 3.846 7.085
## S&D
## [1,] 96.710
## [2,] 97.648
## [3,] 0.938
The next chunk of code makes the plots presented in figure 3
of the paper.
library(car)
cols <- c(recode(vot$legis.data$party,"'ALDE/ADLE'=1;'ECR'=7;
'EFD'=8;'EPP'=4;'Greens/EFA'=3;'GUE-NGL'=5;'S&D'=2;else=9"))
votingweights <- c(12,10,12,7,29,4,7,12,27,29,7,
29,4,4,7,4,12,3,13,10,27,12,14,4,7,7,10,29)
## calculate group mean and sd in 2d,
gr.mean <- aggregate(out2$xbar,by=list(vot$legis.data$partyName),FUN=mean)
gr.sd <- aggregate(out2$xbar,by=list(vot$legis.data$partyName),FUN=var)
gr.mean <- gr.mean[-1,]
gr.sd <- gr.sd[-1,]
plot(x=gr.mean$D1,y=gr.mean$D2,type="n",xlim=c(-1.75,2),ylim=c(-2,2.5),
bty="n",main="Budget votes: Political groups",ylab="2nd dimension",xlab="1st dimension")
points(out2$xbar,pch=16,cex=.5,col="grey")
text(x=gr.mean$D1,y=gr.mean$D2+.2,labels=gr.mean$Group.1,cex=1.5)
plot(out2$xbar[1:28,],xlim=c(-1.75,2),ylim=c(-2,2.5),type="n",
bty="n",main="Budget votes: Council members",ylab="2nd dimension",xlab="1st dimension")
text(out2$xbar[1:28,],labels=rownames(out2$xbar)[1:28],cex=.9)
gr1 <- rownames(out2$xbar)[1:28][out2$xbar[1:28,1]< -.5 & out2$xbar[1:28,2]<0]
#legend("bottomleft",legend=gr1,cex=.6)
gr2 <- rownames(out2$xbar)[1:28][out2$xbar[1:28,1]> -.3 & out2$xbar[1:28,1]< .3 & out2$xbar[1:28,2]< 0]
#legend(0,-1.35,legend=gr2,cex=.6)
gr3 <- rownames(out2$xbar)[1:28][out2$xbar[1:28,1]> .3 & out2$xbar[1:28,1]< .7 & out2$xbar[1:28,2]< -.4]
#legend(.5,-1.2,legend=gr3,cex=.6)
plot(x=gr.mean$D1,y=gr.mean$D2,type="n",xlim=c(-1.75,2),ylim=c(-2,2.5),
bty="n",main="Budget votes: Council and EP",ylab="2nd dimension",xlab="1st dimension")
points(out2$xbar,pch=16,cex=.5,col="grey")
text(x=gr.mean$D1,y=gr.mean$D2+.2,labels=gr.mean$Group.1,cex=1.5)
text(out2$xbar[1:28,],labels=rownames(out2$xbar)[1:28],cex=1.1)
The final chunk of code shows how different votes separated on the first and second dimension. Note that there is no pure second dimension votes.
discr1 <- t(apply(out2$beta[,,1],2,quantile,c(.1,.9)))
overlaps1 <-discr1[,1]<0 & discr1[,2]>0
sum(overlaps1==FALSE)
## [1] 185
sum(overlaps1==TRUE)
## [1] 0
discr2 <- t(apply(out2$beta[,,2],2,quantile,c(.1,.9)))
overlaps2 <- discr2[,1]<0 & discr2[,2]>0
sum(overlaps2==FALSE)
## [1] 170
sum(overlaps2==TRUE)
## [1] 15
sum(overlaps1==TRUE & overlaps2==FALSE)
## [1] 0
sum(overlaps1==FALSE & overlaps2==FALSE)
## [1] 170
vot$vote.data[overlaps1==FALSE & overlaps2==TRUE,]# Pure 1 dimension votes
## EP.date
## Vote 9 2010-03-09
## Vote 12 2010-03-25
## Vote 15 2010-06-15
## Vote 17 2010-06-15
## Vote 18 2010-06-15
## Vote 19 2010-06-15
## Vote 41 2010-11-11
## Vote 61 2010-12-14
## Vote 108 2011-12-01
## Vote 115 2011-12-15
## Vote 146 2012-10-23
## Vote 148 2012-11-21
## Vote 173 2013-09-11
## Vote 182 2013-11-19
## Vote 187 2013-11-20
## EP.ref
## Vote 9 Mobilisation of the European Globilisation Adjustment Fund: Lithuania
## Vote 12 Mobilisation of the European Globalisation Adjustment Fund: Lithuania/Manufacture of wearing apparel
## Vote 15 European Globalisation Adjustment Fund: ES/Region of Valencia
## Vote 17 Mobilisation of European Globalisation Adjustment Fund : ES/Castilla
## Vote 18 Mobilisation of European Globalisation Adjustment Fund : Ireland/Waterford Crystal
## Vote 19 Mobilisation of the European Globalisation Adjustment Fund: technical assistance at the initiative of the Commission
## Vote 41 Mobilisation of the European Globalisation Adjustment Fund: Ireland
## Vote 61 Mobilisation of the European Globalisation Adjustment Fund: Wielkopolskie Automotive from Poland
## Vote 108 Draft amending budget No 6/2011: Own resources, Integrated Maritime Policy, Greece, ESF, Palestine
## Vote 115 Mobilisation of the European Globalisation Adjustment Fund (application EGF/2009/019 FR/Renault from France)
## Vote 146 Own resource based on the value added tax
## Vote 148 Draft Amending Budget No 5/2012: Solidarity Fund response to earthquakes in Emilia-Romagna (Italy) and modification of the budget line for the preparatory action for the European Year of Volunteering 2011
## Vote 173 Draft amending budget No 4/2013 – Staff of the European GNSS Agency – Staff of the Education, Audiovisual and Culture Executive Agency (EACEA) – Staff of the Court of Justice of the European Union
## Vote 182 Draft amending budget No 7/2013
## Vote 187 Draft amending budget No 9/2013: Mobilisation of the EU Solidarity Fund for Romania (Drought and forest fires in 2012) and for Germany, Austria and the Czech Republic (Flooding in May and June 2013)
vot$vote.data[overlaps1==TRUE & overlaps2==FALSE,] # Pure 2 dimension, NONE
## [1] EP.date EP.ref
## <0 rows> (or 0-length row.names)